
pmid: 22325241
Structural modifications using a conventional hemodialyzer improved the internal filtration and clearance of middle molecular weight wastes by enhanced convection effect. In this study, we employed a mathematical model describing the internal filtration rate as well as the hemodynamic and hematologic parameters in highflux dialyzer to interpret the previous reported experimental results. Conventional high-flux hemodialysis and convection-enhanced high-flux hemodialysis were configured in the mathematical forms and integrated into the iterative numerical method to predict the internal filtration phenomena inside the dialyzers during dialysis. The distributions of blood pressure, dialysate pressure, oncotic pressure, blood flow rates, dialysate flow rates, local ultrafiltration, hematocrit, protein concentration and blood viscosity along the axial length of dialyzer were calculated in order to estimate the internal filtration volume. The results show that the filtration volumes by internal filtration is two times higher in a convection-enhanced high-flux hemodialyzer than in a conventional high-flux hemodialzer and explains the experimental result of improved clearance of middle molecular size waste in convection-enhanced high-flux hemodialyzer.
Renal Dialysis, Filtration
Renal Dialysis, Filtration
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
