Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Metabolismarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Metabolism
Article . 2023 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Lactate modulates iron metabolism by binding soluble adenylyl cyclase

Authors: Wei, Liu; Shuping, Zhang; Quanjin, Li; Yue, Wu; Xuan, Jia; Wenya, Feng; Zhaolong, Li; +7 Authors

Lactate modulates iron metabolism by binding soluble adenylyl cyclase

Abstract

Overproduction of lactate (LA) can occur during exercise and in many diseases such as cancers. Individuals with hyperlactatemia often display anemia, decreased serum iron, and elevated hepcidin, a key regulator of iron metabolism. However, it is unknown whether and how LA regulates hepcidin expression. Here, we show LA binds to soluble adenylyl cyclase (sAC) in normal hepatocytes and affects systemic iron homeostasis in mice by increasing hepcidin expression. Comprehensive in vitro, in vivo, and in silico experiments show that the LA-sAC interaction raises cyclic adenosine monophosphate (cAMP) levels, which activates the PKA-Smad1/5/8 signaling pathway to increase hepcidin transcription. We verified this regulatory axis in wild-type mice and in mice with disordered iron homeostasis. LA also regulates hepcidin in humans at rest and subjected to extensive exercise that produce elevated LA. Our study links hyperlactatemia to iron deficiency, offering a mechanistic explanation for anemias seen in athletes and patients with lactic acidosis.

Related Organizations
Keywords

Mice, Hepcidins, Iron, Humans, Animals, Hyperlactatemia, Lactic Acid, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
Related to Research communities
Cancer Research
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!