<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.11824/1622
When using Neural Networks as trial functions to numerically solve PDEs, a key choice to be made is the loss function to be minimised, which should ideally correspond to a norm of the error. In multiple problems, this error norm coincides with--or is equivalent to--the $H^{-1}$-norm of the residual; however, it is often difficult to accurately compute it. This work assumes rectangular domains and proposes the use of a Discrete Sine/Cosine Transform to accurately and efficiently compute the $H^{-1}$ norm. The resulting Deep Fourier-based Residual (DFR) method efficiently and accurately approximate solutions to PDEs. This is particularly useful when solutions lack $H^{2}$ regularity and methods involving strong formulations of the PDE fail. We observe that the $H^1$-error is highly correlated with the discretised loss during training, which permits accurate error estimation via the loss.
Mathematics - Analysis of PDEs, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Analysis of PDEs (math.AP)
Mathematics - Analysis of PDEs, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Analysis of PDEs (math.AP)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 26 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |