
Abstract Process induced heat causes workpiece shape deviations during machining and may result in rejected parts. As unpredictable processing and boundary conditions cannot be simulated in the process planning phase, a process parallel simulation of the workpiece temperature is required to observe and compensate thermal effects. To parametrize the process parallel simulation model, a parameter identification method for milling operations is developed. With model order reduction (MOR) the computational time is reduced to enable the process parallel simulation. An observer based on a few temperature measurements during machining is designed to reconstruct the non-measurable temperature distribution. A validation proves the methods’ potential.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
