Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers & Industri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Computers & Industrial Engineering
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Joint location and dispatching decisions for Emergency Medical Services

Authors: Hector Toro-Díaz; Sunarin Chanta; Maria E. Mayorga; Laura A. McLay;

Joint location and dispatching decisions for Emergency Medical Services

Abstract

The main purpose of Emergency Medical Service systems is to save lives by providing quick response to emergencies. The performance of these systems is affected by the location of the ambulances and their allocation to the customers. Previous literature has suggested that simultaneously making location and dispatching decisions could potentially improve some performance measures, such as response times. We developed a mathematical formulation that combines an integer programming model representing location and dispatching decisions, with a hypercube model representing the queuing elements and congestion phenomena. Dispatching decisions are modeled as a fixed priority list for each customer. Due to the model's complexity, we developed an optimization framework based on Genetic Algorithms. Our results show that minimization of response time and maximization of coverage can be achieved by the commonly used closest dispatching rule. In addition, solutions with minimum response time also yield good values of expected coverage. The optimization framework was able to consistently obtain the best solutions (compared to enumeration procedures), making it suitable to attempt the optimization of alternative optimization criteria. We illustrate the potential benefit of the joint approach by using a fairness performance indicator. We conclude that the joint approach can give insights of the implicit trade-offs between several conflicting optimization criteria.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?