
pmid: 19726043
Quantitative determination of polyethylene glycol (PEG) impurities in two monofunctional polyglycol types, PEG methyl ether (M-PEG) and PEG vinyl ether (V-PEG), has been carried out by reversed-phase liquid chromatography with evaporative light scattering detection (ELSD). In addition to optimizing the resolution between PEG and monofunctional PEG peaks, the major focus has been to determine the molecular weights of PEG impurities in M-PEG and V-PEG of diverse molecular weights. The latter is achieved by examining liquid chromatography-mass spectrometry (LC-MS) mass spectra of both monofunctional PEG and PEG in several cases, and matching peak retention times with those of available PEG standards for all M-PEG and V-PEG sample types. This information is helpful in selecting the appropriate PEG standard to determine PEG content in each sample type. ELSD response factors for various PEG standards have also been compared. It has been found that PEG standards with molecular weights from 1000 Da to 8000 Da show responses that are within 10% of each other. However, a low molecular weight PEG such as PEG 400, provides approximately 30% less response compared to its higher molecular weight counterparts.
Molecular Weight, Surface-Active Agents, Mass Spectrometry, Chromatography, Liquid, Polyethylene Glycols
Molecular Weight, Surface-Active Agents, Mass Spectrometry, Chromatography, Liquid, Polyethylene Glycols
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
