
The literature on Dividing Wall Columns (DWCs) has grown extremely rapidly of late, and many researchers have used models for simulating DWCs. With few exceptions, simulations of DWC use interlinked multi-column models based on the equilibrium stage concept. In fact, rate-based (or nonequilibrium) models are more fundamentally sound and more realistic than equilibrium stage models. However, rate-based models are complicated to develop, because more details of the column design, e.g. tray geometry or packing size, and reliable correlations for transport coefficients and pressure drop, are required. This paper describes just such a model, which, via the CAPE-OPEN framework, can be used in any CAPE-OPEN compliant process flowsheet simulation package. We introduce new parallel column model that is rate-based, and equation oriented and can be used to model DWCs of arbitrary configuration. Heat transfer across the dividing wall can be modelled in a straightforward way. We compare the predictions of the model to experimental data from the University of Texas at Austin. The results of comparisons show good agreement between model predictions and experimental data.
TK7885-7895, Computer engineering. Computer hardware, Chemical engineering, TP155-156
TK7885-7895, Computer engineering. Computer hardware, Chemical engineering, TP155-156
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
