Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemistry and Physic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemistry and Physics of Lipids
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mass spectrometry analysis of oxidized phospholipids

Authors: M Rosário M, Domingues; Ana, Reis; Pedro, Domingues;

Mass spectrometry analysis of oxidized phospholipids

Abstract

The evidence that oxidized phospholipids play a role in signaling, apoptotic events and in age-related diseases is responsible for the increasing interest for the study of this subject. Phospholipid changes induced by oxidative reactions yield a huge number of structurally different oxidation products which difficult their isolation and characterization. Mass spectrometry (MS), and tandem mass spectrometry (MS/MS) using the soft ionization methods (electrospray and matrix-assisted laser desorption ionization) is one of the finest approaches for the study of oxidized phospholipids. Product ions in tandem mass spectra of oxidized phospholipids, allow identifying changes in the fatty acyl chain and specific features such as presence of new functional groups in the molecule and their location along the fatty acyl chain. This review describes the work published on the use of mass spectrometry in identifying oxidized phospholipids from the different classes.

Keywords

Cardiolipins, Phosphatidylethanolamines, Phosphorylcholine, Fatty Acids, Mass Spectrometry, Sphingomyelins, Phosphoserine, Tandem Mass Spectrometry, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Oxidation-Reduction, Phospholipids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    138
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
138
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!