Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemospherearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemosphere
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU

Authors: Wei Zhang; Canran Xu; Yongmin Liu; Shengbao He; Diannan Lu;

Bioadsorption and biostabilization of cadmium by Enterobacter cloacae TU

Abstract

Biostabilization of cadmium, a hazardous chemical found widely in China, was attempted using Enterobacter cloacae TU (E.cloacae TU). A cadmium (Cd)-tolerant E.cloacae TU was obtained by mutagenesis using an atmosphere pressure glow discharge plasma system, and it displayed regular growth behavior in the presence of 250 mg/L Cd in solution. The maximum stabilization capacity of E.cloacae TU toward Cd reached 67.0 ± 3.5 mg/g dry cell weight at an initial Cd concentration of 200 mg/L. The percentage of Cd removal by E.cloacae TU reached 97.4± 0.3% at an initial Cd concentration of 20 mg/L. A desorption experiment confirmed both extracellular adsorption and intracellular uptake contribute to biostabilization, although Cd was mainly distributed on the surface of E.cloacae TU cells due to over-secretion of extracellular polysaccharides under Cd stimulus. The changes in morphology and functional groups of the E.cloacae TU cell surface in the presence of Cd were analyzed using X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and Fourier Transform Infrared Spectoscopy (FT-IR). The feasibility of using E.cloacae TU for this purpose was further confirmed by on site remediation, in which the application of E.cloacae TU reduced the bioavailability and moreover the accumulation of Cd in tobacco plants without affecting the quality of flue-cured tobacco.

Related Organizations
Keywords

Solutions, Nicotiana, China, Biodegradation, Environmental, Photoelectron Spectroscopy, Enterobacter cloacae, Spectroscopy, Fourier Transform Infrared, Adsorption, Cadmium

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?