
pmid: 22921058
High-throughput screening (HTS) of enzymatic activity is important for directed evolution-based enzyme engineering. However, substrate and product diffusion can severely compromise these HTS assays. In this issue of Chemistry & Biology, Kintses and coworkers describe a microfluidic platform for the directed evolution of enzymes in droplets that allows for the screening of 10(7) mutants per round of evolution.
Pharmacology, Clinical Biochemistry, Drug Discovery, Molecular Medicine, Biochemistry, Molecular Biology
Pharmacology, Clinical Biochemistry, Drug Discovery, Molecular Medicine, Biochemistry, Molecular Biology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
