
pmid: 16242649
Many orphan diseases have been identified that individually affect small numbers of patients but cumulatively affect approximately 6%-10% of the European and United States populations. Human genetics has become increasingly effective at identifying genetic defects underlying such orphan genetic diseases, but little progress has been made toward understanding the causal molecular pathologies and creating targeted therapies. Chemical genetics, positioned at the interface of chemistry and genetics, can be used for elucidation of molecular mechanisms underlying diseases and for drug discovery. This review discusses recent advances in chemical genetics and how small-molecule tools can be used to study and ultimately treat orphan genetic diseases. We focus here on a case study involving spinal muscular atrophy, a pediatric neurodegenerative disease caused by homozygous deletion of the SMN1 (survival of motor neuron 1) gene.
Pharmacology, Models, Molecular, Drug Industry, Clinical Biochemistry, Biochemistry, Muscular Atrophy, Spinal, Rare Diseases, Drug Design, Drug Discovery, Molecular Medicine, Humans, Molecular Biology
Pharmacology, Models, Molecular, Drug Industry, Clinical Biochemistry, Biochemistry, Muscular Atrophy, Spinal, Rare Diseases, Drug Design, Drug Discovery, Molecular Medicine, Humans, Molecular Biology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
