
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>pmid: 15157877
Biosynthesis of the anticancer drug Taxol in yew species involves eight cytochrome P450-mediated oxygenations and four coenzyme A-dependent acylations of the diterpenoid core. A family of cytochrome P450 genes, obtained from a yew cell cDNA library, were functionally expressed and screened with taxusin (taxa-4(20),11(12)-dien-5 alpha,9 alpha,10 beta,13 alpha-tetraol tetraacetate) as a surrogate substrate. One clone converted this substrate to an oxygenated derivative that was identified as 7 beta-hydroxytaxusin. The structure and properties of this 7 beta-hydroxylase are similar to those of other taxoid hydroxylases. Kinetic and binding assays indicated selectivity of the 7 beta-hydroxylase for polyoxygenated and acylated taxoid substrates, an observation consistent with the operation of this enzyme in the central portion of the Taxol biosynthetic pathway. Although the 7 beta-hydroxyl of Taxol is not essential for antimitotic activity, this functional group provides a convenient means for preparing taxoid derivatives.
Pharmacology, Base Sequence, Paclitaxel, Clinical Biochemistry, Molecular Sequence Data, Biochemistry, Antineoplastic Agents, Phytogenic, Mixed Function Oxygenases, Cytochrome P-450 Enzyme System, Drug Discovery, Molecular Medicine, Cloning, Molecular, Molecular Biology, Sequence Alignment
Pharmacology, Base Sequence, Paclitaxel, Clinical Biochemistry, Molecular Sequence Data, Biochemistry, Antineoplastic Agents, Phytogenic, Mixed Function Oxygenases, Cytochrome P-450 Enzyme System, Drug Discovery, Molecular Medicine, Cloning, Molecular, Molecular Biology, Sequence Alignment
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 99 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
