
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and is characterized by remarkable desmoplasia. The desmoplasia is composed of extracellular matrix (ECM) proteins, myofibroblastic pancreatic stellate cells, and immune cells associated with a multitude of cytokines, growth factors, and ECM metabolizing enzymes. The mechanisms of participation of this complex matrix process in carcinogenesis are only starting to be appreciated. Recent studies showed key roles for stellate cells in the production of ECM proteins as well as cytokines and growth factors that promote the growth of the cancer cells all present in the desmoplastic parts of PDAC. In addition, interactions of ECM proteins and desmoplastic secreted growth factors with the cancer cells of PDAC activate intracellular signals including reactive oxygen species that act to make the cancer cells resistant to dying. These findings suggest that the desmoplasia of PDAC is a key factor in regulating carcinogenesis of PDAC as well as responses to therapies. A better understanding of the biology of desmoplasia in the mechanism of PDAC will likely provide significant opportunities for better treatments for this devastating cancer.
Fibroma, Desmoplastic, Humans, Adenocarcinoma, Inflammation Mediators, Models, Biological, Carcinoma, Pancreatic Ductal, Signal Transduction
Fibroma, Desmoplastic, Humans, Adenocarcinoma, Inflammation Mediators, Models, Biological, Carcinoma, Pancreatic Ductal, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 211 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
