Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Engineering...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chemical Engineering and Processing - Process Intensification
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Separation of para-xylene from xylene mixture via crystallization

Authors: Hazim A. Mohameed; B. Abu Jdayil; K. Takrouri;

Separation of para-xylene from xylene mixture via crystallization

Abstract

Crystallization kinetics of para-xylene from xylene isomers mixture using a lab-scale cooling batch crystallizer were determined. The cooling batch crystallizer type is simple, flexible and requires less process development. Dynamic mass and population balances were used to model the batch crystallizer. The model equations were solved using the numerical method of lines; a new proposed solution method. The kinetic parameters of nucleation and growth rates were estimated by measuring the concentration and the total mass of para-xylene suspended crystals during the process time. A nonlinear optimization technique was then applied to estimate the parameters. The effect of the cooling strategy on the estimated parameters was studied. It was found that model predictions using the optimum estimated parameters were in good agreement with the experimental results under various cooling strategies. The optimal kinetic parameters were then used to find the optimum cooling strategy to maximize the yield of para-xylene crystals which have an average size greater than 0.5 mm. A new objective function was formulated and also, a nonlinear optimization technique was applied to find the optimum cooling strategy to achieve this product characterization. The optimization technique converged successfully and the proposed objective function was found to be effective to optimize the para-xylene crystallization process.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?