Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Reports
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Reports
Article . 2024
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Reports
Article . 2024
Data sources: DOAJ
versions View all 3 versions
addClaim

SERTAD1 initiates NLRP3-mediated inflammasome activation through restricting NLRP3 polyubiquitination

Authors: Jihoon Ha; Minbeom Kim; Jin Seok Park; Yerin Lee; Jae Young Lee; Jin-Cheol Shin; Dongyeob Seo; +8 Authors

SERTAD1 initiates NLRP3-mediated inflammasome activation through restricting NLRP3 polyubiquitination

Abstract

We here demonstrate that SERTAD1 is an adaptor protein responsible for the regulation of lysine 63 (K63)-linked NLRP3 polyubiquitination by the Cullin1 E3 ubiquitin ligase upon inflammasome activation. SERTAD1 specifically binds to NLRP3 but not to other inflammasome sensors. This endogenous interaction increases after inflammasome activation, interfering with the interaction between NLRP3 and Cullin1. Interleukin (IL)-1β and IL-18 secretion, as well as the cleavage of gasdermin D, are decreased in SERTAD1 knockout bone-marrow-derived macrophages, together with reduced formation of the NLRP3 inflammasome complex. Additionally, SERTAD1-deficient mice show attenuated severity of monosodium-uric-acid-induced peritonitis and experimental autoimmune encephalomyelitis. Analysis of public datasets indicates that expression of SERTAD1 mRNA is significantly increased in the patients of autoimmune diseases. Thus, our findings uncover a function of SERTAD1 that specifically reduces Cullin1-mediated NLRP3 polyubiquitination via direct binding to NLRP3, eventually acting as a crucial factor to regulate the initiation of NLRP3-mediated inflammasome activation.

Related Organizations
Keywords

QH301-705.5, Inflammasomes, Macrophages, Ubiquitin-Protein Ligases, Ubiquitination, CP: Immunology, Mice, NLR Family, Pyrin Domain-Containing 3 Protein, Animals, Humans, Biology (General)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
gold