<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 25239188
Anoikis is a specific type of apoptosis induced by detachment of epithelial cells from extracellular matrix, and acquiring resistance to anoikis is an important step that enables cancer cells to metastasize. EphA2, which is overexpressed in a variety of human cancers, is phosphorylated by Akt on serine 897 and mediates ligand ephrin-independent promotion of anoikis resistance through the RhoG activator Ephexin4. EphB6 is frequently silenced in invasive and metastatic cancers; however, its role in cancer progression is poorly understood. Here we show that EphB6 interacts with EphA2 and suppresses EphA2-mediated promotion of anoikis resistance in MCF7 breast cancer cells. On the other hand, knockdown of EphB6 promotes anoikis resistance. We further show that expression of EphB6 decreases serine 897 phosphorylation of EphA2 and suppresses EphA2-Ephexin4 interaction and the RhoG activation. These findings implicate EphB6 as a negative regulator of EphA2 oncogenic signaling.
rho GTP-Binding Proteins, Receptor, EphA2, Receptor, EphB6, Anoikis, Ligands, Protein Structure, Tertiary, Phosphoserine, HEK293 Cells, Gene Knockdown Techniques, MCF-7 Cells, Guanine Nucleotide Exchange Factors, Humans, Phosphorylation, HeLa Cells, Signal Transduction
rho GTP-Binding Proteins, Receptor, EphA2, Receptor, EphB6, Anoikis, Ligands, Protein Structure, Tertiary, Phosphoserine, HEK293 Cells, Gene Knockdown Techniques, MCF-7 Cells, Guanine Nucleotide Exchange Factors, Humans, Phosphorylation, HeLa Cells, Signal Transduction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |