<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this issue of Cell, McDonald et al. show that giant multinucleated, bone-resorbing osteoclasts dissolve into smaller cells, termed "osteopmorhs," which re-form into osteoclasts at distal bone sites (McDonald et al., 2021). These findings overturn the long-standing premise that osteoclasts differentiate solely from hematopoietic precursors and undergo apoptosis after completing resorption.
Humans, Osteoclasts, Bone Resorption, Bone and Bones
Humans, Osteoclasts, Bone Resorption, Bone and Bones
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |