Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Cell
Article . 2005
versions View all 4 versions
addClaim

Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast

Authors: Xu, Feng; Zhang, Kangling; Grunstein, Michael;

Acetylation in Histone H3 Globular Domain Regulates Gene Expression in Yeast

Abstract

In Saccharomyces cerevisiae, known histone acetylation sites regulating gene activity are located in the N-terminal tails protruding from the nucleosome core. We report lysine 56 in histone H3 as a novel acetylation site that is located in the globular domain, where it extends toward the DNA major groove at the entry-exit points of the DNA superhelix as it wraps around the nucleosome. We show that K56 acetylation is enriched preferentially at certain active genes, such as those coding for histones. SPT10, a putative acetyltransferase, is required for cell cycle-specific K56 acetylation at histone genes. This allows recruitment of the nucleosome remodeling factor Snf5 and subsequent transcription. These findings indicate that histone H3 K56 acetylation at the entry-exit gate enables recruitment of the SWI/SNF nucleosome remodeling complex and so regulates gene activity.

Keywords

Models, Molecular, Biochemistry, Genetics and Molecular Biology(all), Chromosomal Proteins, Non-Histone, Gene Expression Profiling, Lysine, Cell Cycle, Gene Expression, Acetylation, SMARCB1 Protein, Saccharomyces cerevisiae, DNA-Binding Proteins, Histones, Drosophila melanogaster, Acetyltransferases, Gene Expression Regulation, Fungal, Mutation, Animals, Humans, HeLa Cells, Histone Acetyltransferases, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    355
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
355
Top 1%
Top 1%
Top 1%
hybrid