Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cell Calciumarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell Calcium
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Fusion pore regulation in peptidergic vesicles

Authors: Jernej, Jorgačevski; Marko, Kreft; Nina, Vardjan; Robert, Zorec;

Fusion pore regulation in peptidergic vesicles

Abstract

Regulated exocytosis, which involves fusion of secretory vesicles with the plasma membrane, is an important mode of communication between cells. In this process, signalling molecules that are stored in secretory vesicles are released into the extracellular space. During the initial stage of fusion, the interior of the vesicle is connected to the exterior of the cell with a narrow, channel-like structure: the fusion pore. It was long believed that the fusion pore is a short-lived intermediate state leading irreversibly to fusion pore dilation. However, recent results show that the diameter of the fusion pore can fluctuate, suggesting that the fusion pore is a subject of stabilization. A possible mechanism is addressed in this article, involving the local anisotropicity of membrane constituents that can stabilize the fusion pore. The molecular nature of such a stable fusion pore to predict how interacting molecules (proteins and/or lipids) mediate changes that affect the stability of the fusion pore and exocytosis is also considered. The fusion pore likely attains stability via multiple mechanisms, which include the shape of the lipid and protein membrane constituents and the interactions between them.

Related Organizations
Keywords

Cholesterol, Munc18 Proteins, Sphingosine, Secretory Vesicles, Cell Membrane, Peptides, SNARE Proteins, Membrane Fusion, Exocytosis, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!