
pmid: 16797068
Low-voltage activated, T-type calcium channels (T-channels) are expressed in many developing tissues and may be important in regulating important cellular phenotype transitions leading to cell proliferation, differentiation, growth and death. The purpose of this review is to relate and delineate the current data on the involvement of T-channels in differentiation and proliferation. Owing to the recent cloning of the CaV3.1, CaV3.2 and CaV3.3 subunits coding for T-channels, classical electrophysiological and pharmacological approaches are now being supported by molecular investigations. As T-channels are expressed in early development as well as re-expressed in several disease-states, our goal is to provide a comprehensive scheme of the current hypothesis connecting the activity of T-channels to cell differentiation and proliferation, as well as the potential physiological and pathophysiological implications.
Calcium Channels, T-Type, Transcription, Genetic, Animals, Gene Expression Regulation, Developmental, Humans, Cell Differentiation, Cell Proliferation
Calcium Channels, T-Type, Transcription, Genetic, Animals, Gene Expression Regulation, Developmental, Humans, Cell Differentiation, Cell Proliferation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 123 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
