
pmid: 15661523
The fact that some kinesin-related proteins can destabilize microtubules is now a well-established fact. However, the contribution that these kinesins make to cellular function is just coming into focus. Key structural and kinetic studies on the mechanism of microtubule depolymerization by these kinesins have provided a framework for understanding their cellular regulation and function. Completion of some of the genome sequences and recent technological advances enabling the rapid depletion of cellular proteins in metazoans have clarified the functional role and level of cooperation between members of the depolymerizing kinesin families. Recent studies utilizing these technologies have revealed how these kinesins play an integral role in the mechanics of mitotic spindle assembly, chromosome segregation and the shaping of connections in the brain.
Neurons, Hydrolysis, Adenylyl Imidodiphosphate, Kinesins, Mitosis, Spindle Apparatus, Microtubules, Models, Biological, Kinetics, Adenosine Triphosphate, Animals, Humans
Neurons, Hydrolysis, Adenylyl Imidodiphosphate, Kinesins, Mitosis, Spindle Apparatus, Microtubules, Models, Biological, Kinetics, Adenosine Triphosphate, Animals, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 107 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
