
pmid: 27912815
Apical revascularization (AR) and platelet-rich plasma have been used to restore dental pulp vitality in infected immature permanent teeth. Two regenerative therapies are cell transplantation and cell homing. This article updates and benchmarks these therapies with cell homing. A case report concluded that AR increased root length; however, quantitative and statistical assessments disproved this. Regenerative endodontic therapies require prospective clinical trials demonstrating safety and efficacy. These therapies are intrinsically susceptible to procedural and patient variations. Cell homing uses novel molecules that drive therapeutic efficacy, and may be less sensitive to procedural and patient variations.
Tissue Engineering, Tissue Scaffolds, Cell Transplantation, Cell Movement, Dental Pulp Necrosis, Animals, Humans, Regeneration, Dental Pulp
Tissue Engineering, Tissue Scaffolds, Cell Transplantation, Cell Movement, Dental Pulp Necrosis, Animals, Humans, Regeneration, Dental Pulp
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
