Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Dental Clinics of No...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Dental Clinics of North America
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Regenerative Endodontics by Cell Homing

Authors: Ling, He; Juan, Zhong; Qimei, Gong; Bin, Cheng; Sahng G, Kim; Junqi, Ling; Jeremy J, Mao;

Regenerative Endodontics by Cell Homing

Abstract

Apical revascularization (AR) and platelet-rich plasma have been used to restore dental pulp vitality in infected immature permanent teeth. Two regenerative therapies are cell transplantation and cell homing. This article updates and benchmarks these therapies with cell homing. A case report concluded that AR increased root length; however, quantitative and statistical assessments disproved this. Regenerative endodontic therapies require prospective clinical trials demonstrating safety and efficacy. These therapies are intrinsically susceptible to procedural and patient variations. Cell homing uses novel molecules that drive therapeutic efficacy, and may be less sensitive to procedural and patient variations.

Related Organizations
Keywords

Tissue Engineering, Tissue Scaffolds, Cell Transplantation, Cell Movement, Dental Pulp Necrosis, Animals, Humans, Regeneration, Dental Pulp

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!