
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels. The edited COPA protein increases proliferation, migration, and invasion of cancer cells in vitro. Our study suggests an important contribution of A-to-I RNA editing to protein diversity in cancer and highlights its translational potential.
Proteomics, Adenosine, Brain Neoplasms, Sequence Analysis, RNA, Inosine, Gene Expression Regulation, Neoplastic, Cell Movement, Tandem Mass Spectrometry, Cell Line, Tumor, Databases, Genetic, Humans, RNA Editing, Cell Proliferation
Proteomics, Adenosine, Brain Neoplasms, Sequence Analysis, RNA, Inosine, Gene Expression Regulation, Neoplastic, Cell Movement, Tandem Mass Spectrometry, Cell Line, Tumor, Databases, Genetic, Humans, RNA Editing, Cell Proliferation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 180 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
