
pmid: 35427562
Pyroptosis is identified as a pro-inflammatory programmed cell death, mediated by gasdermins (GSDMs) family of proteins accompanied by pro-inflammatory signals release. As essential players in innate immunity, inflammasomes are intracellular protein complexes which cleave gasdermin D (GSDMD), forming structurally stable pores in the cell membrane, subsequently inducing pyroptosis. Extensive evidence indicates that inflammasomes and pyroptosis contributes to tumors, nerve injury, inflammatory diseases and metabolic disorders. As a metabolic disorder, diabetes is characterized with hyperglycemia, insulin resistance and chronic inflammation. Meanwhile, aberrant pyroptosis exerts a key role in the occurrence and progression of diabetes and its common complication, diabetic nephropathy (DN). Furthermore, evidence has shown that DN patients and animal models exhibit increased circulating IL-1β and inflammasome, while decreasing the expression of key components of the inflammasome mitigates kidney damage and delays progression. Current research has reported that non-coding RNAs (ncRNAs) are involved in activation of inflammasomes and play a crucial role in the control of pyroptosis in DN pathogenesis. In addition, studies have indicated that some natural plant compounds have therapeutic potential via regulation of inflammasomes and pyroptosis to prevent and potentially treat DN. This mini-review examines the molecular mechanism of inflammasome activation and pyroptosis, highlights the critical roles of ncRNA and explores potential therapeutics to regulate pyroptosis in DN.
Inflammation, Inflammasomes, Diabetes Mellitus, Pyroptosis, Animals, Humans, Diabetic Nephropathies, Phosphate-Binding Proteins
Inflammation, Inflammasomes, Diabetes Mellitus, Pyroptosis, Animals, Humans, Diabetic Nephropathies, Phosphate-Binding Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
