Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Amsterdam UMC (VU Am...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clinica Chimica Acta
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Oxidation of parathyroid hormone

Authors: Stan R. Ursem; Marc G. Vervloet; Renate T. de Jongh; Annemieke C. Heijboer;

Oxidation of parathyroid hormone

Abstract

Parathyroid hormone (PTH) is the key hormone regulating calcium homeostasis and, as such, is an important diagnostic and prognostic marker. Although the measurement of PTH has greatly improved over the past few decades, oxidation status thereof is unaccounted for in currently used assays. PTH can be oxidized on methionine residues located at amino acid positions 8 and 18. This is a relevant post-translational modification as, due to refolding of the molecule, it results in the decreased ability to activate the PTH1 receptor. Although this loss of activity after oxidation was observed as early as 1934, only recently a method was developed to measure and distinguish non-oxidized PTH (n-oxPTH) from oxidized PTH. This method creates exciting possibilities for studying more specifically the role of n-oxPTH in physiology and pathology. Therefore, it can now be explored what the clinical implications of measuring n-oxPTH will be. Herein, we review the available evidence of the effect of oxidation on the biological activity of PTH. We also discuss studies examining the mechanism of PTH oxidation in vivo and efforts to stabilize synthetic PTH ex vivo for therapeutic applications. Lastly, the available studies regarding the clinical significance of n-oxPTH are evaluated and future directions discussed.

Country
Netherlands
Keywords

Parathyroid Hormone, Animals, Humans, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!