
pmid: 28323199
The extensive use and release to the aquatic environment of silver nanoparticles (NPs) could lead to their incorporation into the food web. Brine shrimp larvae of 24h showed low sensitivity to the exposure to PVP/PEI-coated Ag NPs (5nm), with EC50 values at 24h of 19.63mgAgL-1, but they significantly accumulated silver after 24h of exposure to 100μgL-1 of Ag NPs. Thus, to assess bioaccumulation and effects of silver transferred by the diet in zebrafish, brine shrimp larvae were exposed to 100ngL-1 of Ag NPs as an environmentally relevant concentration or to 100μgL-1 as a potentially effective concentration and used to feed zebrafish for 21days. Autometallography revealed a dose- and time-dependent metal accumulation in the intestine and in the liver of zebrafish. Three-day feeding with brine shrimps exposed to 100ngL-1 of Ag NPs was enough to impair fish health as reflected by the significant reduction of lysosomal membrane stability and the presence of vacuolization and necrosis in the liver. However, dietary exposure to 100μgL-1 of Ag NPs for 3days did not significantly alter gene transcription levels, neither in the liver nor in the intestine. After 21days, biological processes such as lipid transport and localization, cellular response to chemical stimulus and response to xenobiotic stimulus were significantly altered in the liver. Overall, these results indicate an effective dietary transfer of silver and point out to liver as the main target organ for Ag NP toxicity in zebrafish after dietary exposure.
Silver, Surface Properties, Metal Nanoparticles, Povidone, Food Contamination, Lipid Metabolism, Toxicokinetics, Intestines, Lethal Dose 50, Necrosis, Liver, Microscopy, Electron, Transmission, Larva, Toxicity Tests, Acute, Animals, Polyethyleneimine, Tissue Distribution, Artemia, Intestinal Mucosa, Lysosomes
Silver, Surface Properties, Metal Nanoparticles, Povidone, Food Contamination, Lipid Metabolism, Toxicokinetics, Intestines, Lethal Dose 50, Necrosis, Liver, Microscopy, Electron, Transmission, Larva, Toxicity Tests, Acute, Animals, Polyethyleneimine, Tissue Distribution, Artemia, Intestinal Mucosa, Lysosomes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
