
pmid: 32087550
The introduction of fluorine atoms into organic molecules has received considerable attention as these organofluorines have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of synthetic C-F forming methodologies, selective fluorination is still extremely challenging. Therefore, a biotransformation approach using fluorine biocatalysts is needed to selectively introduce fluorine into structurally diverse molecules. Yet, there are few ways that enable incorporation of fluorine into structurally complex bioactive molecules. One is to extend the substrate scope of the existing enzyme inventory. Another is to expand the biosynthetic pathways to accept fluorinated precursors for producing fluorinated bioactive molecules. Finally, an understanding of the physiological roles of fluorometabolites in the producing microorganisms will advance our ability to engineer a microorganism to produce novel fluorinated commodities. Here, we review the fluorinase biotechnology and fluorine biocatalysts that incorporate fluorine motifs to generate fluorinated molecules, and highlight areas for future developments.
Halogenation, Molecular Structure, Stereoisomerism, Fluorine, Bacterial Proteins, Biocatalysis, Hydroxy Acids, Oxidoreductases, Biotransformation, Transaminases
Halogenation, Molecular Structure, Stereoisomerism, Fluorine, Bacterial Proteins, Biocatalysis, Hydroxy Acids, Oxidoreductases, Biotransformation, Transaminases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 52 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
