
pmid: 16233986
Mechanistic studies of the action of catalytic ribonucleic acids, ribozymes, are highly challenging, because even a slight structural change can dramatically affect the chain folding. This, in turn, alters the binding properties of the catalytic core, making identification of the real origin of the observed influence on rate difficult. Unambiguous structure-reactivity correlations based on studies with structurally simplified chemical models may help to distinguish between alternative mechanistic interpretations. The results of such model studies are reviewed. The topics include intramolecular cleavage of RNA phosphodiester bonds by solvent-derived species, general acids/bases and metal ions, effect of molecular environment on their hydrolytic stability and trinucleoside monophosphates as models for large ribozymes.
Models, Chemical, RNA, RNA, Catalytic, Hydrogen-Ion Concentration, Catalysis
Models, Chemical, RNA, RNA, Catalytic, Hydrogen-Ion Concentration, Catalysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
