
pmid: 15183333
High-throughput screening (HTS), systematically testing thousands of small molecules to find candidates for lead optimization, primarily involves exposure of purified proteins to arrayed collections of small molecules. More complex phenotypic assays, such as cell-based or whole-organism assays, traditionally have flanked HTS, preceding it to validate new therapeutic targets, and following it to characterize new lead compounds in cellular contexts. Recently, however, cell- and organism-based phenotypic assays have increasingly been adopted as a primary screening platform for annotating small molecules.
Phenotype, Spectrometry, Fluorescence, Drug Design, Drug Evaluation, Preclinical, Combinatorial Chemistry Techniques, Genetic Engineering, Medical Informatics, Pattern Recognition, Automated
Phenotype, Spectrometry, Fluorescence, Drug Design, Drug Evaluation, Preclinical, Combinatorial Chemistry Techniques, Genetic Engineering, Medical Informatics, Pattern Recognition, Automated
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 92 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
