
pmid: 30707978
Doxorubicin (Dox), a widely used chemotherapy drug, can also cause cardiotoxic effects leading to heart failure. The excessive oxidative stress caused by Dox results in the modification of a variety of cellular molecules, including phospholipids. In cardiomyocytes, Dox increases oxidation of a species of phospholipids, phosphatidylcholine, which has been associated with increased cell death. Oxidized phospholipids (Ox-PL) are involved in development and progression of various pathologies, including atherosclerosis, thrombosis, and tissue inflammation. Moreover, Ox-PL and excess iron are associated with ferroptosis, a form of regulated cell death. Neutralizing Ox-PL increases resistance to ischemia-reperfusion injuries which is linked to preservation of the mitochondrial membrane potential. This review aims to discuss the potential role of Ox-PL in Dox-induced pathology and supports the notion that a better understanding of the field could point to new strategies to prevent cardiotoxicity.
Doxorubicin, Animals, Humans, Oxidation-Reduction, Cardiotoxicity, Phospholipids
Doxorubicin, Animals, Humans, Oxidation-Reduction, Cardiotoxicity, Phospholipids
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 117 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
