
D-Glucosamine has been widely reported to have immunosuppressive actions on neutrophils, lymphocytes, and other cells of the immune system. However, under conditions used in biological experiments (e.g., neutral pH, and phosphate buffers), we have found that D-glucosamine self-reacts to form 2,5-deoxyfructosazine [2-(D-arabino-tetrahydroxybutyl)-5-(D-erythro-2,3,4-trihydroxybutyl)pyrazine] (1) and 2,5-fructosazine [2,5-bis(D-arabino-tetrahydroxybutyl)pyrazine] (2). When tested for bioactivity at nontoxic concentrations, these D-glucosamine derivatives were more effective inhibitors of IL-2 release from PHA-activated T cells than d-glucosamine. Hence, fructosazines constitute a novel class of immunomodulators.
Glucosamine, Jurkat Cells, Microscopy, Fluorescence, Pyrazines, T-Lymphocytes, Animals, Humans, Interleukin-2, Phytohemagglutinins
Glucosamine, Jurkat Cells, Microscopy, Fluorescence, Pyrazines, T-Lymphocytes, Animals, Humans, Interleukin-2, Phytohemagglutinins
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 32 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
