<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 17368591
The SCN5A gene encodes specific voltage-dependent Na+ channels abundant in cardiac muscle that open and close at specific stages of cardiac activity in response to voltage change, thereby controlling the magnitude and timecourse of voltage-dependent Na+ currents (iNa) in cardiac muscle cells. Although iNa has been recorded from sinoatrial (SA) node pacemaker cells, its precise role in SA node pacemaker function remains uncertain. This review summarizes recent findings bearing upon: (i) Sinus node dysfunction resulting from genetic mutations in SCN5A; (ii) Sinus node function in the murine cardiac model with targeted disruptions of the SCN5A gene; (iii) Experimental and computational evaluations of the functional roles of iNa in SA node pacemaker function. Taken together, these new observations suggest strong correlations between SCN5A-encoded Na+ channel and SA node pacemaker function.
Mice, Knockout, Pacemaker activity, Models, Cardiovascular, Muscle Proteins, Voltage-dependent Na+ channels, Sodium Channels, NAV1.5 Voltage-Gated Sodium Channel, Mice, SA node, Heart Conduction System, Models, Animal, Mutation, Animals, Humans, Computer Simulation, Myocytes, Cardiac, Ion Channel Gating, Sinoatrial Node
Mice, Knockout, Pacemaker activity, Models, Cardiovascular, Muscle Proteins, Voltage-dependent Na+ channels, Sodium Channels, NAV1.5 Voltage-Gated Sodium Channel, Mice, SA node, Heart Conduction System, Models, Animal, Mutation, Animals, Humans, Computer Simulation, Myocytes, Cardiac, Ion Channel Gating, Sinoatrial Node
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 79 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |