<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a nonnegative dictionary based on prototype elements from the training images; this problem is formulated as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to non-overlapping patches of the image, which reduces the computational complexity compared to other algorithms. Computational experiments clarify the choice and interplay of the model parameters and the regularization parameters, and we show that in few-projection low-dose settings our algorithm is competitive with total variation regularization and tends to include more texture and more correct edges.
25 pages, 12 figures
Inverse problems, FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Regularization, Image reconstruction, Computer Science - Computer Vision and Pattern Recognition, FOS: Mathematics, 65F22, 65K10, Dictionary learning, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Tomography
Inverse problems, FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Regularization, Image reconstruction, Computer Science - Computer Vision and Pattern Recognition, FOS: Mathematics, 65F22, 65K10, Dictionary learning, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Tomography
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |