
pmid: 34303696
Blood that enters the subarachnoid space (SAS) and its breakdown products are neurotoxic and are the principal inducers of brain injury after subarachnoid hemorrhage (SAH). Recently, meningeal lymphatic vessels (MLVs) have been proven to play an important role in clearing erythrocytes that arise from SAH, as well as other macromolecular solutes. However, evidence demonstrating the relationship between MLVs and brain injury after SAH is still limited. Therefore, we performed this study to observe the effects of meningeal lymphatic impairment on early brain injury (EBI) after experimental SAH.The MLVs of C57BL/6 male adult mice were ablated by injecting Visudyne into the cisterna magna and transcranially photoconverting it with laser light. The MLVs were then examined by immunofluorescence staining for lyve-1. Next, both the MLV-ablated group and the control group (normal mice) underwent filament perforation to model SAH or sham operation. We assessed the cortical perfusion of all the mice before SAH induction, 5 min after SAH and 24 h after SAH. In addition, we evaluated neurological function deficits by Garcia scores and measured brain water content at 24 h post SAH. Then, neuroinflammation and neural apoptosis in the mouse brain were also examined.Visudyne and transcranial photoconversion treatment notably ablated mouse MLVs. Five minutes after SAH induction, cortical perfusion was significantly impaired, and after 24 h, this impairment was ameliorated considerably in the control group but ameliorated only slightly or worsened in the MLV-ablated group. Additionally, the MLVablated group presented worse neurological function deficits and more severe brain edema than the control group. More notably, neuroinflammation and neural apoptosis were also observed.Ablation of MLVs by Visudyne treatment exacerbated EBI after experimental SAH in mice. The worsening of EBI may have arisen from limited drainage of blood and other breakdown products, which are thought to cause brain edema, neuroinflammation, neuronal apoptosis and other pathological processes.
Brain Chemistry, Cerebral Cortex, Male, Apoptosis, Mice, Inbred C57BL, Disease Models, Animal, Mice, Meninges, Subarachnoid Hemorrhage, Traumatic, Body Water, Cerebrovascular Circulation, Brain Injuries, Traumatic, Cisterna Magna, Animals, Encephalitis, Lymphatic Vessels
Brain Chemistry, Cerebral Cortex, Male, Apoptosis, Mice, Inbred C57BL, Disease Models, Animal, Mice, Meninges, Subarachnoid Hemorrhage, Traumatic, Body Water, Cerebrovascular Circulation, Brain Injuries, Traumatic, Cisterna Magna, Animals, Encephalitis, Lymphatic Vessels
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
