Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2017 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

Vesicle Fusion Mediated by Solanesol-Anchored DNA

Authors: Kristina M, Flavier; Steven G, Boxer;

Vesicle Fusion Mediated by Solanesol-Anchored DNA

Abstract

Fusion between two lipid bilayers is one of the central processes in cell biology, playing a key role in endocytosis, exocytosis, and vesicle transport. We have previously developed a model system that uses the hybridization of complementary DNA strands to model the formation of the SNARE four-helix bundle that mediates synaptic vesicle fusion and used it to study vesicle fusion to a tethered lipid bilayer. Using single vesicle assays, 70% of observed fusion events in the DNA-lipid system are arrested at the hemifusion stage, whereas only 5% eventually go to full fusion. This may be because the diglycerol ether that anchors the DNA in the membrane spans only half the bilayer: upon hemifusion and mixing of the outer leaflets, the DNA-lipid is free to diffuse into the target membrane and away from the vesicle. Here, we test the hypothesis that the length of the membrane anchor may impact the outcome by comparing single leaflet-spanning DNA-lipid mediated vesicle fusion with fusion mediated by DNA anchored by solanesol, a C45 isoprenoid of sufficient length to span the bilayer. When the solanesol anchor was present on the incoming vesicles, target membrane, or both, ∼2-3 times as much full fusion was observed as in the DNA-lipid mediated system, as measured by lipid mixing or content transfer. These results indicate that a transmembrane anchor increases the efficiency of full fusion.

Related Organizations
Keywords

Microscopy, Fluorescence, Terpenes, Lipid Bilayers, Animals, DNA, SNARE Proteins, Transport Vesicles, Chickens, Membrane Fusion, Chromatography, High Pressure Liquid

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
hybrid