Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 2 versions
addClaim

TMAO-Protein Preferential Interaction Profile Determines TMAO’s Conditional In Vivo Compatibility

Authors: Jiang, Hong; Shangqin, Xiong;

TMAO-Protein Preferential Interaction Profile Determines TMAO’s Conditional In Vivo Compatibility

Abstract

Trimethylamine N-oxide (TMAO) exemplifies how Nature uses the solute effect as a simple chemical strategy to cope with hydrodynamic pressure or urea stress to maintain proteostasis. It is a gut-microbe-generated metabolite that strongly promotes the development of atherosclerosis. It remains unclear how TMAO exerts its effects. In this study, we experimentally characterized the profile of the preferential interaction potential of TMAO with proteins, a thermodynamic key to understanding the effects of TMAO on protein processes and the distinction of TMAO among osmolytes. TMAO is thus found to be highly preferentially excluded from most types of protein surface, which explains why TMAO is a strong globular protein stabilizer and identifies the dominant stabilizing factor as the unfavorable interaction of TMAO with the hydrophobic surface exposed upon unfolding. We dissected the mechanism of the counteracting effects of TMAO and urea: the contrary feature of the interaction profiles of the two solutes maximizes the possibility for them to offset each other's perturbing effect on protein processes. The interaction profile also predicts that TMAO promotes aggregation of amyloidogenic intrinsically disordered peptide, as demonstrated here in Aβ42, and that TMAO has a strong potential to impact protein processes in the absence of stressors. Our data suggest that although TMAO is an evolutionally selected chemical chaperone for some organisms or organs, its compatibility in vivo is conditional and determined by its interaction profile with biopolymers and the nature of the essential biopolymer processes. Our thermodynamic framework plus the TMAO-protein interaction profile provides a basis for exploring the broad biological significance of TMAO, including its pathological impact in the absence of stressors. We argue for the general importance of controlling in vivo background solutes and the pathological significance of a control failure.

Related Organizations
Keywords

Osmosis, Amyloid beta-Peptides, Dose-Response Relationship, Drug, Protein Stability, Proteins, Peptide Fragments, Substrate Specificity, Methylamines, Thermodynamics, Urea, Drug Interactions, Protein Multimerization, Protein Structure, Quaternary, Hydrophobic and Hydrophilic Interactions, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Average
Top 10%
hybrid