Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biophysical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biophysical Journal
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biophysical Journal
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterization of the Plant-Specific Rice Kinesins

Authors: Nozomi Umezu; Nobuhisa Umeki; Shinsaku Maruta; Nobue Hanzawa; Toshiaki Mitsui; Kazunori Kondo;

Characterization of the Plant-Specific Rice Kinesins

Abstract

Kinesin is a motor protein that plays important physiological roles in intracellular transport, mitosis and meiosis, control of microtubule dynamics and signal transduction. Kinesin converts chemical energy from ATP into mechanical force. Kinesin family is classified into some subfamilies. Some species of kinesin derived from vertebrate have been well studied. However, not so many studies for kinesins of plants have been done yet. Recently, the genome sequences of rice were completed. Bioinformatical analyses revealed that at least 41 kinesin-related proteins were encoded on the rice genome. In this study, we focused on the two rice kinesins; 1. O12 that has a calponin homology domain, 2. K23 that belongs to At1 subfamily in kinesin-7. The cDNAs of the kinesin motor domain was subcloned into expression vector pET and transformed into E. coli BL21 (DE3). kinesin motor domains were expressed and purified by Co-NTA column. The biochemical characterizations of the two rice kinesins were studied. The microtubule-dependent ATPase activity of the two rice kinesins motor domains were 30∼60-fold lower than that of conventional kinesin. Kinetic analyses using stopped-flow demonstrated that ATP binding to O12 in the absence of microtubule was extremely slow compared with that of conventional kinesin. While, ATP binding to K23 was not accelerated by microtubule. Furthermore, interestingly ATPase activity of O12 in the absence microtubule regulated by actin. The O12-tail fused with GFP was observed to localize in the actin filament in the onion cell. The two plant specific rice kinesin O12 and K23 were shown to have unique enzymatic properties.

Keywords

Biophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid