
pmid: 39442854
Advanced Glycation End-products (AGEs) are seen in long-lived proteins and were not expected to accumulate in the bone that turnovers and renews itself. Here, we provide a commentary on the contrary, highlighting the Special Issue of AGEs in Bone. An outcome of hyperglycemia and increased oxidative stress, AGEs form and accumulate by altering the bone resorption and formation processes. Accumulation of various AGEs species in bone increases bone fragility through the stiffening of the collagen network and, potentially, through the changes in collagen-mineral interactions. Evidence from both preclinical and clinical studies is leading to new translational approaches wherein measurement, inhibition, or removal of AGEs show the potential to diagnose, manage, and treat bone fragility associated with multiple conditions and diseases.
Glycation End Products, Advanced, Animals, Humans, Bone and Bones
Glycation End Products, Advanced, Animals, Humans, Bone and Bones
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
