Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bonearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bone
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

PKCα suppresses osteoblastic differentiation

Authors: Akio, Nakura; Chikahisa, Higuchi; Kiyoshi, Yoshida; Hideki, Yoshikawa;

PKCα suppresses osteoblastic differentiation

Abstract

Protein kinase C (PKC) plays an essential role in cellular signal transduction for mediating a variety of biological functions. There are 11 PKC isoforms and these isoforms are believed to play distinct roles in cells. Although the role of individual isoforms of PKC has been investigated in many fields, little is known about the role of PKC in osteoblastic differentiation. Here, we investigated which isoforms of PKC are involved in osteoblastic differentiation of the mouse preosteoblastic cell line MC3T3-E1. Treatment with Gö6976, an inhibitor of PKCα and PKCβI, increased alkaline phosphatase (ALP) activity as well as gene expression of ALP and Osteocalcin (OCN), and enhanced calcification of the extracellular matrix. Concurrently, osteoblastic cell proliferation decreased at a concentration of 1.0 μM. In contrast, a PKCβ inhibitor, which inhibits PKCβI and PKCβII, did not significantly affect osteoblastic differentiation or cell proliferation. Knockdown of PKCα using MC3T3-E1 cells transfected with siRNA also induced an increase in ALP activity and in gene expression of ALP and OCN. In contrast, overexpression of wild-type PKCα decreased ALP activity and attenuated osteoblastic differentiation markers including ALP and OCN, but promoted cell proliferation. Taken together, our results indicate that PKCα suppresses osteoblastic differentiation, but promotes osteoblastic cell proliferation. These results imply that PKCα may have a pivotal role in cell signaling that modulates the differentiation and proliferation of osteoblasts.

Related Organizations
Keywords

Osteoblasts, Protein Kinase C-alpha, Carbazoles, Cell Differentiation, Adenoviridae, Enzyme Activation, Mice, Gene Knockdown Techniques, Protein Kinase C beta, Animals, Tetradecanoylphorbol Acetate, Protein Kinase C

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!