
pmid: 18358712
Immunosensors are biosensors that use antibodies or antigens as the specific sensing element and provide concentration-dependent signals. There is great potential in the applications of immunosensing technologies for rapid detection of pesticide residues in food and environment. This paper presents an overview of various transduction systems, such as electrochemical, optical, piezoelectric, and nanomechanics methods, which have been reported in the literature in the design and fabrication of immunosensors for pesticide detection. Various immobilization protocols used for formation of a biorecognition interface are also discussed. In addition, techniques of regeneration, signal amplification, miniaturization, and antibodies are evaluated for the development and applications of these immunosensors. It can be concluded that despite some limitations of the immunosensing technologies, these immuosensors for pesticide monitoring are becoming more and more relevant in environmental and food analysis.
Immunoassay, Optics and Photonics, Electrochemistry, Biosensing Techniques, Equipment Design, Pesticides, Environmental Monitoring
Immunoassay, Optics and Photonics, Electrochemistry, Biosensing Techniques, Equipment Design, Pesticides, Environmental Monitoring
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 206 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
