Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica

Authors: Yanzhe Shang; Ping Zhang; Wenping Wei; Jin Li; Bang-Ce Ye;

Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica

Abstract

Polydatin, a glycosylated derivative of resveratrol, has better structural stability and biological activity than resveratrol. Polydatin is the extract of Polygonum cuspidatum, which has various pharmacological effects. Owing to its Crabtree-negative characteristics and high supply of malonyl-CoA, Yarrowia lipolytica was selected to produce polydatin. Initially, the resveratrol synthetic pathway was established in Y. lipolytica. By enhancing the shikimate pathway flow, redirecting carbon metabolism, and increasing the copies of key genes, a resveratrol yield of 487.77 mg/L was obtained. In addition, by blocking the degradation of polydatin, its accumulation was successfully achieved. Finally, by optimizing the glucose concentration and supplementing with two nutritional marker genes, a high polydatin yield of 6.88 g/L was obtained in Y. lipolytica, which is the highest titer of polydatin produced in a microbial host to date. Overall, this study demonstrates that Y. lipolytica has great potential for glycoside synthesis.

Related Organizations
Keywords

Metabolic Engineering, Resveratrol, Yarrowia

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!