Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic Chemistry
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

S-Adenosylmethionine radical enzymes

Authors: E Neil G, Marsh; Anjali, Patwardhan; Marja S, Huhta;

S-Adenosylmethionine radical enzymes

Abstract

The role of S-adenosylmethionine (SAM) as a precursor to organic radicals, generated by one-electron reduction of SAM and subsequent fission to form 5'-deoxyadenosyl radical and methionine, has been known for some time. Only recently, however, has it become apparent how widespread such enzymes are, and what a wide range of chemical reactions they catalyze. In the last few years several new SAM radical enzymes have been identified. Spectroscopic and kinetic investigations have begun to uncover the mechanism by which an iron sulfur cluster unique to these enzymes reduces SAM to generate adenosyl radical. Most recently, the first X-ray structures of SAM radical enzymes, coproporphyrinogen-III oxidase, and biotin synthase have been solved, providing a structural framework within which to interpret mechanistic studies.

Related Organizations
Keywords

Models, Molecular, Kinetics, S-Adenosylmethionine, Free Radicals, Protein Conformation, Sulfurtransferases, Coproporphyrinogen Oxidase, Molecular Conformation, Enzymes, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!