Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimie
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus

Authors: Chamindri, Witharana; Verena, Roppelt; Günther, Lochnit; Gabriele, Klug; Elena, Evguenieva-Hackenberg;

Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus

Abstract

The archaeal exosome is a protein complex involved in the degradation and the posttranscriptional tailing of RNA. The proteins Rrp41, Rrp42, Rrp4, Csl4 and DnaG are major subunits of the exosome in Sulfolobus solfataricus. In vitro, Rrp41 and Rrp42 form a catalytically active hexamer, to which an RNA-binding cap of Rrp4 and/or Csl4 is attached. Rrp4 confers strong poly(A) specificity to the exosome. The majority of Rrp41 and DnaG is detectable in the insoluble fraction and is localized at the cell periphery. The aim of this study was to analyze whether there are differences in the composition of the soluble and the insoluble exosomes. We found that the soluble exosome contains less DnaG and less Csl4 than the insoluble exosome which co-sediments with ribosomal subunits in sucrose density gradients. EF1-alpha was co-precipitated with the soluble exosome from S100 fractions using DnaG-directed antibodies, and from density gradient fractions using Rrp41-specific antibodies, strongly suggesting that EF1-alpha is an interaction partner of the soluble exosome. Furthermore, Csl4 was co-immunoprecipitated with the exosome using Rrp4-specific antibodies and vice versa, demonstrating the presence of heteromeric RNA-binding caps in vivo. To address the mechanism for poly(A) recognition by Rrp4, an exosome with an RNA-binding cap composed of truncated Rrp4 lacking the KH domain was reconstituted and analyzed. Although the deletion of the KH domain negatively influenced the degradation activity of the exosome, the poly(A) specificity was retained, showing that the KH domain is dispensable for the strong poly(A) preference of Rrp4.

Keywords

RNA, Bacterial, Bacterial Proteins, Solubility, RNA Stability, Sulfolobus solfataricus, Exosomes, Poly A, Protein Structure, Tertiary, Substrate Specificity

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!