Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochimiearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimie
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Biochimie
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations

Authors: Michaël, Ryckelynck; Richard, Giegé; Magali, Frugier;

tRNAs and tRNA mimics as cornerstones of aminoacyl-tRNA synthetase regulations

Abstract

Structural plasticity of transfer RNA (tRNA) molecules is essential for interactions with their biological partners in aminoacylation reactions and during ribosome-dependent protein synthesis. This holds true when tRNAs are recruited for other functions than translation. Here we review regulation pathways where tRNAs and tRNA mimics play a pivotal role. We further discuss the importance of the identity signals used in aminoacylation that are also required to specify regulatory mechanisms. Such mechanisms are diverse and intervene in transcription, splicing and translation. Altogether, the review highlights the many manners architectural features of tRNA were selected by evolution to control biological key processes.

Keywords

Base Sequence, Transcription, Genetic, Molecular Mimicry, Gene Expression Regulation, Bacterial, Gene Expression Regulation, Enzymologic, Amino Acyl-tRNA Synthetases, RNA, Transfer, Protein Biosynthesis, Escherichia coli, Nucleic Acid Conformation, Transfer RNA Aminoacylation, Amino Acids, Protein Kinases, Bacillus subtilis, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!