Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Function of connexin 43 and RhoA/LIMK2/Cofilin signaling pathway in transient changes of contraction and dilation of human umbilical arterial smooth muscle cells

Authors: Zhizhao, Deng; Yanling, Zhang; Qian, Zhang; Xianlong, Li; Weiqi, Zeng; Cai, Jun; Dongdong, Yuan;

Function of connexin 43 and RhoA/LIMK2/Cofilin signaling pathway in transient changes of contraction and dilation of human umbilical arterial smooth muscle cells

Abstract

Post-induction hypotension, a common complication after propofol-based induction regimen, is a life-threatening challenge for anesthesiologists especially when unexpected pre-induction hypertension characterized by angiotensin release and increased vascular tone was presented by the same patient. Gap junctions (GJs) composed of connexin 43 (Cx43) have been considered a key factor in regulating vascular contraction and dilation. We aimed to explore the role of Cx43-GJs during peri-induction blood pressure fluctuation and elucidate the underlying mechanisms.Human umbilical arterial smooth muscle cells (HUASMCs) were pretreated by short-term Angiotensin Ⅱ (Ang Ⅱ) with or without subsequent propofol treatment to simulate transient contraction and dilation of vascular smooth muscle cells during anesthesia induction. F-actin polymerization, a classic indicator of HUASMCs constriction, was determined by F-actin staining assay. Both the function and expression of Cx43-GJs during transient contraction and dilation of HUASMCs, and their potential regulation of downstream Ca2+/RhoA/LIMK2/Cofilin signaling pathway were explored via different targeting inhibitors and siRNAs.Ang Ⅱ pretreatment significantly induced F-actin polymerization that indicate cell contraction, accompanied by enhanced GJs function on HUASMCs. With the inhibition of Cx43 GJs by the specific inhibitor, Gap26, and Cx43-siRNA, Ang Ⅱ-induced F-actin polymerization was reversed accompanied with the decrease of intracellular Ca2+ mobility and the RhoA/LIMK2/Cofilin signaling pathway activity. We also noticed that propofol application could inhibit GJs function, the same as Gap26. Simultaneously, intracellular Ca2+ mobility and RhoA/LIMK2/Cofilin signaling pathway activity on HUASMCs were both downregulated, finally resulting in downstream reduction of F-actin polymerization.The function of Cx43-GJs lies in the center of Ang Ⅱ-induced contraction of HUASMCs, which potentially regulates intracellular Ca2+ mobility as well as RhoA/LIMK2/Cofilin signaling pathway activity. Propofol can reverse this effect induced by Ang Ⅱ through suppressing the function of Cx43-GJs.

Related Organizations
Keywords

Angiotensin II, Myocytes, Smooth Muscle, Lim Kinases, Dilatation, Actins, Actin Depolymerizing Factors, Connexin 43, Humans, rhoA GTP-Binding Protein, Propofol, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!