Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions

Authors: Rong Wang; Qun Wang; Mengsi Hu; Junhui Zhen; Zhimei Lv; Jiangong Lin;

Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions

Abstract

Ras-related C3 botulinum toxin substrate 1 (Rac1), together with its major downstream effector p21-activated kinase 1 (PAK1), has been identified a central role in cellular events such as cell cytoskeletal remodeling that contributed to cell migration and epithelial-mesenchymal transition (EMT). And there are data implicating that podocytes underwent EMT under pathological conditions. However, little is known about mechanisms of podocytes undergoing EMT. To address this, we assessed the cellular changes of podocytes after high glucose stimulation in vitro, detected the effects of Rac1/PAK1 signaling on podocytes in response to the stimuli, and investigated interactions of Rac1/PAK1 axis with β-catenin and Snail under high glucose conditions. We found that in vitro high glucose treatment led to remarkable down-regulation of nephrin and P-cadherin, as well as significant up-regulation of α-SMA and FSP-1, suggesting that in the presence of high glucose, podocytes underwent EMT, during which Rac1/PAK1 signaling was activated. And these were notably ameliorated by Rac1 gene knockdown. Furthermore, β-catenin and Snail nuclear translocation were triggered by Rac1/PAK1 axis, which were both markedly reversed via Rac1 gene knockdown or pretreatment of IPA-3, a PAK1 inhibitor. These findings elaborated that Rac1/PAK1 signaling contributed to high glucose-induced podocyte EMT via promoting β-catenin and Snail transcriptional activities, which could be a potential mechanism involved in podocytes injury in response to stimuli under diabetic conditions.

Related Organizations
Keywords

Transcriptional Activation, Epithelial-Mesenchymal Transition, Podocytes, Neuropeptides, S100 Proteins, Membrane Proteins, Cadherins, Actins, Mice, Glucose, p21-Activated Kinases, Gene Knockdown Techniques, Animals, S100 Calcium-Binding Protein A4, Snail Family Transcription Factors, RNA, Small Interfering, Cells, Cultured, beta Catenin, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!