Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Biochemistry & Cell Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Superoxide anion: Oncogenic reactive oxygen species?

Authors: Shazib, Pervaiz; Marie-Veronique, Clement;

Superoxide anion: Oncogenic reactive oxygen species?

Abstract

Recent evidence linking intracellular reactive oxygen species to cell survival and/or proliferation signals has resulted in a paradigm shift from the age-old dogma implicating reactive oxygen species exclusively in cell damage and death. It is now accepted that reactive oxygen species play important roles in normal physiological states and that depending on the species involved the effect could be highly varied. In this regard, the effects of the two major reactive oxygen species, superoxide and hydrogen peroxide have been extensively studied. During normal cell growth a tight balance between the two species is kept under check by the cells' anti-oxidant defense systems. Deficiency or defect in this defense armory is invariably associated with neoplasia, thus rendering the intracellular redox status in a state of imbalance and generating a "pro-oxidant" milieu. A variety of model systems have underscored the relationship between a pro-oxidant state and cancer promotion and progression. In this review, we present evidence to support the hypothesis that the effect of intracellular reactive oxygen species on oncogenesis is dependent on the ratio of intracellular superoxide to hydrogen peroxide in that a predominant increase in superoxide supports cell survival and promotes oncogenesis whereas a tilt in favor of hydrogen peroxide prevents carcinogenesis by facilitating cell death signaling.

Keywords

Cell Transformation, Neoplastic, Superoxides, Neoplasms, Animals, Humans, Hydrogen Peroxide, Reactive Oxygen Species, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    152
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
152
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!