Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Refractory anemia with ring sideroblasts

Authors: MALCOVATI, LUCA; CAZZOLA, MARIO;

Refractory anemia with ring sideroblasts

Abstract

Refractory anemia with ring sideroblasts (RARS) is a subtype of myelodysplastic syndrome (MDS) characterized by 15% or more ring sideroblasts in the bone marrow according to the WHO classification. After Perls staining, ring sideroblasts are defined as erythroblasts in which there are 5 or more siderotic granules covering at least a third of the nuclear circumference. The iron deposited in perinuclear mitochondria of ring sideroblasts is present in the form of mitochondrial ferritin. The molecular basis of MDS with ring sideroblasts has remained unknown until recently. In 2011, whole exome sequencing studies revealed somatic mutations of SF3B1, a gene encoding a core component of RNA splicing machinery, in myelodysplasia with ring sideroblasts. The close relationship between SF3B1 mutation and ring sideroblasts is consistent with a causal relationship, and makes SF3B1 the first gene to be associated with a specific morphological feature in MDS. RARS is mainly characterized by isolated anemia due to ineffective erythropoiesis, and its clinical course is generally benign, although there is a tendency to worsening of anemia in most patients over time. By contrast, refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS) is characterized by pancytopenia and dysplasia in two or more myeloid cell lineages. More importantly, patients with RCMD-RS have a higher risk of developing bone marrow failure or progressing to acute myeloid leukemia (AML). Refractory anemia with ring sideroblasts (RARS-T) associated with marked thrombocytosis is a myelodysplastic/myeloproliferative neoplasm associated with both SF3B1 and JAK2 or MPL mutations. RARS-T may develop from an SF3B1 mutated RARS through the acquisition of a JAK2 or MPL mutations in a subclone of hematopoietic cells.

Country
Italy
Related Organizations
Keywords

Iron, Hemoglobinuria, Paroxysmal, 610, Mitochondrial Proteins, 616, Humans, Erythropoiesis, Myeloid Cells, Bone Marrow Diseases, MYELODYSPLASTIC SYNDROME, Thrombocytosis, Ring sideroblast, Anemia, Refractory, Anemia, Aplastic, Bone Marrow Failure Disorders, Ribonucleoprotein, U2 Small Nuclear, Phosphoproteins, Anemia, Sideroblastic, Leukemia, Myeloid, Acute, Ferritins, Mutation, RNA Splicing Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!