
Gemcitabine is a widely used chemotherapeutic drug that is administered via intravenous infusion due to a low oral bioavailability of only 10%. This low oral bioavailability is believed to be the result of gemcitabine's low intestinal permeability and oral absorption, followed by significant presystemic metabolism. In the present study, we sought to define the mechanisms of gemcitabine intestinal permeability, the potential for saturation of intestinal uptake, and the transporter(s) responsible for mediating the oral absorption of drug using in situ single-pass intestinal perfusions in mice. Concentration-dependent studies were performed for gemcitabine over 0.5-2000 μM, along with studies of 5 μM gemcitabine in a sodium-containing buffer ± thymidine (which can inhibit concentrative (i.e., CNT1 and CNT3) and equilibrative (i.e., ENT1 and ENT2) nucleoside transporters) or dilazep (which can inhibit ENT1 and ENT2), or in a sodium-free buffer (which can inhibit CNT1 and CNT3). Our findings demonstrated that gemcitabine was, in fact, a high-permeability drug in the intestine at low concentrations, that jejunal uptake of gemcitabine was saturable and mediated almost exclusively by nucleoside transporters, and that jejunal flux was mediated by both high-affinity, low-capacity (Km = 27.4 µM, Vmax = 3.6 pmol/cm2/s) and low-affinity, high-capacity (Km = 700 µM, Vmax = 35.9 pmol/cm2/s) transport systems. Thus, CNTs and ENTs at the apical membrane allow for gemcitabine uptake from the lumen to enterocyte, whereas ENTs at the basolateral membrane allow for gemcitabine efflux from the enterocyte to portal venous blood.
Male, Mice, Inbred BALB C, Cell Membrane Permeability, Dilazep, Cell Membrane, Administration, Oral, Membrane Transport Proteins, Deoxycytidine, Oral Mucosal Absorption, Gemcitabine, Mice, Inbred C57BL, Perfusion, Inhibitory Concentration 50, Mice, Intestinal Absorption, Equilibrative Nucleoside Transport Proteins, Animals, Female, Thymidine
Male, Mice, Inbred BALB C, Cell Membrane Permeability, Dilazep, Cell Membrane, Administration, Oral, Membrane Transport Proteins, Deoxycytidine, Oral Mucosal Absorption, Gemcitabine, Mice, Inbred C57BL, Perfusion, Inhibitory Concentration 50, Mice, Intestinal Absorption, Equilibrative Nucleoside Transport Proteins, Animals, Female, Thymidine
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
