
pmid: 31472956
In flowering plants, stamen development is a complex multistage process, which is highly regulated by a series of transcription factors. In this study, BcMF28, which encodes a R2R3-MYB transcription factor, was isolated from Brassica campestris. BcMF28 is localized in the nucleus and cytoplasm, and acts as a transcriptional activator. Quantitative real-time PCR and promoter activity analysis revealed that BcMF28 was predominately expressed in inflorescences. The expression of BcMF28 was specifically detected in tapetum, developing microspores, anther endothecium, and filaments during late stamen development. The overexpression of BcMF28 in Arabidopsis resulted in aberrant stamen development, including filament shortening, anther indehiscence, and pollen abortion. Detailed analysis of anther development in transgenic plants revealed that the degeneration of septum and stomium did not occur, and endothecium lignification was affected. Furthermore, the expression levels of genes involved in the phenylpropanoid metabolism pathway were altered in BcMF28-overexpressing transgenic plants. Our results suggest that BcMF28 plays an important regulatory role during late stamen development.
Plant Infertility, Arabidopsis Proteins, Propanols, Arabidopsis, Gene Expression Regulation, Developmental, Flowers, Plants, Genetically Modified, Gene Expression Regulation, Plant, Pollen, Transcription Factors
Plant Infertility, Arabidopsis Proteins, Propanols, Arabidopsis, Gene Expression Regulation, Developmental, Flowers, Plants, Genetically Modified, Gene Expression Regulation, Plant, Pollen, Transcription Factors
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
