Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Overexpression of a stamen-specific R2R3-MYB gene BcMF28 causes aberrant stamen development in transgenic Arabidopsis

Authors: Xiuping, Shen; Ziwei, Hu; Xun, Xiang; Liai, Xu; Jiashu, Cao;

Overexpression of a stamen-specific R2R3-MYB gene BcMF28 causes aberrant stamen development in transgenic Arabidopsis

Abstract

In flowering plants, stamen development is a complex multistage process, which is highly regulated by a series of transcription factors. In this study, BcMF28, which encodes a R2R3-MYB transcription factor, was isolated from Brassica campestris. BcMF28 is localized in the nucleus and cytoplasm, and acts as a transcriptional activator. Quantitative real-time PCR and promoter activity analysis revealed that BcMF28 was predominately expressed in inflorescences. The expression of BcMF28 was specifically detected in tapetum, developing microspores, anther endothecium, and filaments during late stamen development. The overexpression of BcMF28 in Arabidopsis resulted in aberrant stamen development, including filament shortening, anther indehiscence, and pollen abortion. Detailed analysis of anther development in transgenic plants revealed that the degeneration of septum and stomium did not occur, and endothecium lignification was affected. Furthermore, the expression levels of genes involved in the phenylpropanoid metabolism pathway were altered in BcMF28-overexpressing transgenic plants. Our results suggest that BcMF28 plays an important regulatory role during late stamen development.

Related Organizations
Keywords

Plant Infertility, Arabidopsis Proteins, Propanols, Arabidopsis, Gene Expression Regulation, Developmental, Flowers, Plants, Genetically Modified, Gene Expression Regulation, Plant, Pollen, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!